
ARMY RESEARCH LABORATORY

The Inertial Reticle Technology (IRT)
Applied to an M16A2 Rifle Firing

From a Fast Attack Vehicle

by Timothy L. Brosseau, Mark D. Kregel,
Baily T. Haug, and John T. McLaughlin

ARL-TR-2209 April 2000

20000501 123

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Abstract

Motion of the muzzle of a weapon fired from a moving vehicle occurs during firing because
of many factors, such as vibrations caused by the vehicle's wheels or the terrain. This motion
can have adverse effects on the capabilities of the weapon to hit a target, because the shooter is
unable to accurately position the muzzle of the weapon onto the target as the projectile exits the
barrel. Large, heavy vehicles, such as the Abrams tank, the Bradley Fighting Vehicle, and the
costly Apache helicopter, have very expensive gun turrets that are controlled by very expensive,
fully stabilized gun sights to accurately position the muzzle of the weapon onto the target.
However, small and lightweight vehicles, such as a small helicopter, a fast attack vehicle, or a
high-mobility multipurpose wheeled vehicle (HMMWV), cannot justify such expensive gun
turrets and fully stabilized sights. Therefore, to improve the accuracy of a weapon firing from
a small, lightweight vehicle, the U.S. Army Research Laboratory (ARL) has developed the
Inertial Reticle Technology (IRT).

This report presents how the IRT was applied to a 5.56-mm M16A2 rifle firing from a fast
attack vehicle. The complete details of the IRT applied to a 5.56-mm M16A2 rifle firing from
a fast attack vehicle are presented along with an analysis of stationary and moving vehicle live
fire test data.

ii

Table of Contents

Page

List of Figures v

1. Introduction 1

2. The IRT Applied to a Weapon Firing From a Lightweight Vehicle 1

3. The IRT Applied to a 5.56-mm M16A2 Rifle Firing From a Fast Attack
Vehicle 3

4. Indoor Testing of the IRT Applied to a 5.56-mm M16A2 Rifle 7

5. Initial Long-Range Outdoor Testing of the IRT Applied to a 5.56-mm
M16A2 Rifle Firing From a Fast Attack Vehicle 7

6. Final Long-Range Outdoor Testing of the IRT Applied to a 5.56-mm
M16A2 Rifle Firing From a Fast Attack Vehicle 9

7. Conclusions H

Appendix: Computer Programs 13

Distribution List • 51

Report Documentation Page 53

m

INTENTIONALLY LEFT BLANK.

IV

List of Figures

Figure Page

1. The IRT Applied to an Ml6A2 Rifle Firing From a Fast Attack Vehicle
(Right Side View) 3

2. The IRT Applied to an Ml 6A2 Rifle Firing From a Fast Attack Vehicle
(Left Side View) 4

3. Remote Control Panel (Rests on Gunner's Lap) 6

4. Video Image of 20.3-cm Target at 417 m (Monitor in Remote Control Panel) 6

5. The Isolation Mount Between the Frame of the Fast Attack Vehicle and
the Weapon Platform 9

INTENTIONALLY LEFT BLANK.

VI

1. Introduction

Motion of the muzzle of a weapon fired from a moving vehicle occurs during firing because

of many factors, such as vibrations caused by the vehicle's wheels or the terrain. This motion

can have adverse effects on the capabilities of the weapon to hit a target, because the shooter is

unable to accurately position the muzzle of the weapon onto the target as the projectile exits the

barrel. Large, heavy vehicles, such as the Abrams tank, the Bradley Fighting Vehicle, and the

costly Apache helicopter, have very expensive gun turrets that are controlled by very expensive,

fully stabilized gun sights to accurately position the muzzle of the weapon onto the target.

However, small and lightweight vehicles, such as a small helicopter, a fast attack vehicle, or a

high-mobility multipurpose wheeled vehicle (HMMWV), cannot justify such expensive gun

turrets and fully stabilized sights. Therefore, to improve the accuracy of a weapon firing from a

small, lightweight vehicle, the U.S. Army Research Laboratory (ARL) has developed the Inertial

Reticle Technology (TRT).

2. The IRT Applied to a Weapon Firing From a
Lightweight Vehicle

Two test beds were built as part of the IRT program, which was an Army Science and

Technology Objective culminating in December 1998. The initial test bed was a fast attack

vehicle on which the IRT was integrated with a 5.56-mm M16A2 rifle. The second test bed was

a HMMWV on which the IRT was integrated with a .50-cal. M2 heavy-barrel machine gun.

This section discusses the common aspects of the design, and the rest of this report focuses on

the fast attack vehicle test bed.

The IRT replaces the conventional sights or scope on the weapon fired from a lightweight

vehicle with a video camera that is mounted to the weapon and a video display mounted in a

remote control panel that rests on the gunner's lap inside the vehicle. The IRT also replaces the

weapon mount on the lightweight vehicle with a remotely operated, lightweight, and inexpensive

weapon positioner or turret.

1

In the IRT test beds, the weapon positioner drives the weapon in both the elevation and

azimuth directions by means of two inexpensive low-power stepper motors. Two shaft angle

encoders are attached to the elevation and azimuth axes of the weapon positioner to measure the

relative angular displacements of the weapon relative to the weapon platform. Three orthogonal

angular rate sensors are mounted on the weapon platform. The outputs of the rate sensors are

integrated to provide the angular displacements of the weapon platform in the pitch, yaw, and

roll directions. On the fast attack vehicle, a simple wheel counter, mounted on the vehicle,

counts wheel rotations, which allows the calculation of vehicle translation relative to the target.

A revolution counter on the speedometer cable performs the same task on the HMMWV.

The initial range of the vehicle to the target is put into the computer manually or from a range

finder mounted on the weapon. A continuous readout of the range is shown on the operator's

display in the remote control panel that rests on the gunner's lap inside the vehicle. A small

computer is used to generate two electronic pointers that can be overlaid on the video image.

The first pointer is a dot that is aligned with the barrel centerline of the weapon and, thus,

represents the aim point. With inputs from the range finder, the wheel counter, and the shaft

angle encoders, the aim point is ballistically corrected for range and lag angles and becomes the

ballistic solution. The second pointer is a crosshair referred to as the inertial reticle. This reticle

is driven in opposition to the weapon and vehicle motions, as measured by the shaft angle

encoders, integrated rate sensors, and the wheel counter, so that the inertiäl reticle appears to

remain fixed relative to the target, even though the weapon and vehicle might be moving. Even

though the video scene may be moving around significantly, there is no relative motion between

the inertial reticle and the target. This makes it easy to position the inertial reticle over the

desired target using a joystick mounted on the remote control panel.

Once the initial range to the target is put into the computer and the inertial reticle is

accurately placed over the desired target, the computer continuously measures the difference in

the position of the inertial reticle relative to the aim point. This error signal is used to drive the

stepper motors to position the aim point over the inertial reticle. As the aim point and the inertial

reticle are aligned, a prediction algorithm on the computer calculates the precise firing time,

ensuring that the projectile exits the muzzle as the ballistic solution is aligned with the intertial

reticle. Assuming that the gunner has enabled the system to fire, the precise firing is

accomplished by means of an electric solenoid that is attached to the trigger of the weapon. To

simplify the display for the gunner, the ballistic solution is typically not displayed, and the

gunner's tasks are to select the target, enter the range, and keep the inertial reticle on target.

3. The IRT Applied to a 5.56-mm M16A2 Rifle Firing
From a Fast Attack Vehicle

The IRT was applied to a 5.56-mm M16A2 rifle firing from a fast attack vehicle, as shown in

Figures 1 and 2. The 5.56-mm M16A2 rifle was fitted with a Sony (EVI-330T) CCD camera

block. The Sony (EVI-330T) camera block has a 12x optical zoom, auto focus lens. It also has a

2x electronic zoom, which when combined with the 12x optical zoom gives a video image that is

equivalent to the image seen through a conventional 12x scope. The video image from the

camera block is viewed by the gunner on a Sony flat-panel display monitor (FMD-402A)

mounted in the remote control panel.

El Encoder

Figure 1. The IRT Applied to an M16A2 Rifle Firing From a Fast Attack Vehicle
(Right Side View).

yjjsöjriv.*?
::.&f

Range Finder

«&&&&&&&*.'• *.■■•■■ , '<

Video Camera

Figure 2. The IRT Applied to an M16A2 Rifle Firing From a Fast Attack Vehicle
(Left Side View).

The 5.56-mm M16A2 rifle is mounted on two Aerotech (ART 312) rotary positioning stages.

One stage is used for the elevation direction and the second stage is used for the azimuth

direction. Both stages are driven by stepper motors that are powered by Dynacron (DM 8010)

microstepping translators. Two Itek LSI Micro Series (uS/16/23K) shaft angle encoders measure

the relative angular displacements between the weapon and the weapon platform in azimuth and

elevation. The shaft angle encoders are mounted inside of the rotary positioning stages, and their

output shafts are attached to the elevation and the azimuth axis of the weapon platform. Three

Systran Donner quartz rate sensors (QRS-11-0010-101) mounted to the weapon platform

measure the angular displacements of the weapon platform in elevation, azimuth, and roll. A

simple wheel counter that was designed and built at ARL measures vehicle translation.

The initial range of the vehicle to the target is measured using a Helios range finder that is

mounted just above the CCD camera block. The range finder is controlled remotely from inside

the vehicle by switches on the remote control panel. Once the initial range to the target is put

into the computer and the inertial reticle is accurately placed over the desired target, the target

designator switch on the gunner's control panel is momentarily engaged. At this time, the initial

position of the target relative to the inertial reticle is determined in inertial coordinates.

Theoretically, once the inertial reticle is positioned accurately over the target, it should stay there

indefinitely. However, due to random walk in the quartz rate sensors, the inertial reticle will

drift off from the target after several seconds. The inertial reticle can be easily repositioned over

the target by slight movements of the joystick. If the drift becomes large enough to get outside

of the range of the joystick correction, a switch on the gunner's control panel can be turned on,

switching the joystick operation from the displacement mode to the velocity mode and giving it

an endless correction range. A second switch on the gunner's control panel can also be engaged

when the joystick is in velocity mode. This causes the stepper motors of the weapon positioner

to move at a much faster rate, which facilitates getting the target in the field of view.

Control of firing the weapon is accomplished by means of an arm switch and a fire button

that are mounted on the gunner's control panel. Once the arm switch is turned on and the gunner

is satisfied with the position of the inertial reticle over the desired target, then the gunner

depresses the fire button and holds it depressed to enable the electrical firing solenoid. Using the

ballistic solution, the weapon automatically fires such that the projectile exit from the barrel

occurs when the muzzle of the weapon is properly aligned on the target.

The integration of the quartz rate sensors signals, the reading of the wheel counter, the

reading of the shaft angle encoders, the determination of the target position in inertial space, the

control of the weapon positioner, the generation of the predictive fire control algorithm, and the

firing of the weapon are accomplished by a small WinSystems 486 SLC computer and power

supply. The generation of the electronic pointers is accomplished by a small 386 SX computer

that is fed directly into the WinSystems 486 SLC computer.

The complete computer programs for both of the computers are presented in the Appendix.

The gunner's control panel is shown in Figure 3. The video image as seen on the monitor in the

gunner's control panel is shown in Figure 4. The range to the target is shown in the upper left

corner. The diameter of the black target in the center of the video image is 20.3 cm.

Figure 3. Remote Control Panel (Rests on Gunner's Lap).

Figure 4. Video Image of 20.3-cm Target at 417 m (Monitor in Remote Control Panel).

4. Indoor Testing of the IRT Applied to a 5.56-mm
M16A2 Rifle

Prior to any long-range testing of the IRT applied to a 5.56-mm M16A2 rifle firing from a

fast attack vehicle, extensive short-range testing was done in the indoor range in Building 390 at

ARL. Over 100 rounds were fired with the weapon positioner mounted to a rigid plate to

determine if the weapon positioner, the video camera, the shaft angle encoders, and the quartz

rate sensors could withstand the shock from firing. Accuracy measurements were also taken

during the initial testing for each round fired. The accuracy acceptance specification for M855

ammunition, which was used in the initial testing, converts to an average standard deviation of

.28 mil in both the elevation and the azimuth directions. The average standard deviations in the

elevation and the azimuth directions for several 10-round groups fired with the weapon

positioner mounted to a rigid plate were .26 mil and .24 mil, respectively. Since the average

standard deviation for the experiments with the weapon positioner mounted to a rigid plate were

essentially the same as the accuracy acceptance specification, it was felt that the IRT integrated

with the 5.56-mm M16A2 rifle was achieving its maximum accuracy performance for these

conditions and no further short-range indoor experiments were performed. There was also no

noticeable damage to the weapon positioner, the video camera, the shaft angle encoders, or the

quartz rate sensors after firing over 100 rounds.

5. Initial Long-Range Outdoor Testing of the IRT
Applied to a 5.56-mm M16A2 Rifle Firing From a Fast
Attack Vehicle

After the indoor testing was completed, initial long-range outdoor firing of the IRT applied to

the 5.56-mm M16A2 IRT test bed was mounted on a fast attack vehicle and initial long-range

outdoor firing experiments were done at the U.S. Army Aberdeen Test Center (ATC) H-Field

test facility at the Edgewood Area of Aberdeen Proving Ground. Before any firings from a

moving vehicle were done, firings from a stationary vehicle were made at a 400-m target. The

average standard deviations in the elevation and the azimuth directions for several five-round

groups of M855 ammunition fired semiautomatically by the gunner from inside the stationary

vehicle were .29 mil and .30 mil, respectively. Since the average standard deviations for the

firings by the gunner from inside the stationary vehicle were essentially the same as the accuracy

acceptance specification of .28 mil, it was felt that the IRT integrated with a 5.56-mm M16A2

rifle was achieving its maximum accuracy performance for these conditions and no further

stationary long-range experiments were required, and firing-on-the-move experiments were

initiated.

After completing the stationary vehicle firings at the 400-m target, the firings were repeated

with the gunner firing from inside the vehicle while the vehicle was moving toward the target.

Five-round groups were fired semiautomatically by the gunner at about 1-s intervals, while the

vehicle was traveling at 16 kph down a gravel road toward a 400-m target. The average standard

deviations in the elevation and the azimuth directions for several five-round groups of M855

ammunition fired semiautomatically by the gunner from inside the moving vehicle were .93 mil

and .87 mil, respectively. Since the standard deviations were considerably higher than those

obtained in the stationary vehicle firings, the firings were stopped to determine why the standard

deviations were so much higher.

In reviewing the video tape of the inertial reticle taken during the firings from the moving

vehicle, it was determined that a high-frequency oscillation of about 25 Hz was being transmitted

from the frame of the fast attack vehicle into the weapon platform as the fast attack vehicle was

traveling down the gravel road at 16 kph. The weapon controller and the IRT sensors easily

handled the 25-Hz oscillations and held the reticle over the aim point, but the video image was

moving so rapidly that multiple reticles appeared that made it very difficult to accurately hold the

inertial reticle on the target.

The 25-Hz oscillation also caused a serious problem with the firing predictor, because the

time interval from the firing pulse to the projectile exit from the gun barrel was 30 ms for the

hammer-fired 5.56-mm M16A2 rifle. At 25 Hz, the firing predictor could not predict reliably out

to 30 ms and there were many instances when the muzzle of the weapon was not pointing at the

target when the projectile exited the gun barrel. To prevent the 25-Hz oscillation in the frame of

the fast attack vehicle from being transmitted to the weapon platform, an inexpensive isolation

mount was designed and built and placed between the frame of the fast attack vehicle and the

weapon platform. By using two roller bearings, two swivel bearings, several light springs, three

oil-filled dashpots, and extra weights, the frequency of the weapon platform was reduced to

about 3 Hz in the elevation, the azimuth, and the roll directions when the fast attack vehicle was

traveling at 16 kph down the gravel road. At 3 Hz, there were no multiple inertial reticles on the

video image and the inertial reticle could easily be held on target. The firing predictor was also

easily able to predict reliably out to 30 ms. The isolation mount can be seen in Figure 5 between

the frame of the fast attack vehicle and the weapon platform.

Figure 5. The Isolation Mount Between the Frame of the Fast Attack Vehicle and the
Weapon Platform.

6. Final Long-Range Outdoor Testing of the IRT Applied
to a 5.56-mm M16A2 Rifle Firing From a Fast Attack
Vehicle

After the initial long-range outdoor testing was completed and the isolation mount was

installed and tested extensively in nonfiring runs at 16 kph down a gravel road, final long-range

outdoor testing of the IRT applied to an M16A2 rifle firing from a fast attack vehicle was done at

the H-Field test facility at the Edgewood Area of Aberdeen Proving Ground. The firing

experiments from a moving vehicle done in the initial long-range outdoor testing of the IRT were

repeated on the same firing range. Ten rounds were fired semiautomatically by the gunner from

inside the vehicle at about 1-s intervals while the vehicle was moving at 16 kph down the same

gravel road toward the 400-m target. The average standard deviations in the elevation and the

azimuth directions for several 10-round groups of M855 ammunition fired semiautomatically by

the gunner from inside the moving vehicle were .47 mil and .43 mil, respectively. The extreme

spread for the firings was 43 cm.

In reviewing the videotape of the inertial reticle taken during the firing experiments from the

moving vehicle, it was determined that the weapon platform was oscillating at a frequency of

about 3 Hz. A check of the firing time data also taken during the firing experiments showed that

there were no instances when the muzzle of the weapon was not pointing at the target when the

projectile exited the gun barrel. Since the average standard deviations for the firings by the

gunner from inside the moving vehicle were only slightly higher than those fired from the

stationary vehicle, it was felt that the IRT applied to an M16A2 rifle firing from a fast attack

vehicle was achieving its optimum performance in accuracy for this scenario. Once the firings

from the moving vehicle while driving toward the 400-m target were completed, the target was

placed 400-m off to the side of the vehicle and the firing experiments were repeated with the

gunner firing from inside the moving vehicle and the weapon pointing over the right and left

sides of the vehicle while it traversed parallel to the target along a gravel road at 16 kph. The

IRT held the inertial reticle on the target and put in the correct amount of lag angle so that the

projectiles hit on target. The average standard deviations for the elevation and the azimuth

directions for several 10-round groups of M855 ammunition fired semiautomatically by the

gunner from inside the moving vehicle were .48 mil and .50 mil, respectively. The extreme

spread for the firings was 48 cm. The average standard deviations were essentially the same as

those for the previous firings for the vehicle traveling straight toward the target

To check out the capability of the IRT to fire at a moving target, if data on the movement of

the target were available to the IRT computer, the first firing experiments of firing at a 400-m

10

target while the vehicle was traveling along a gravel road at 16 kph toward the target were

repeated. However, in the new experiments, the target was moving left to right at 16 kph.

Ten-round groups were fired semiautomatically by the gunner from inside the vehicle at about

1-s intervals while the vehicle was moving down the gravel road at 16 kph toward the 400-m

target. The IRT held the inertial reticle on the target and put in the correct amount of lead angle

so that the projectiles hit on target The average standard deviations in the elevation and the

azimuth directions for several 10-round groups of M855 ammunition fired semiautomatically by

the gunner from inside the moving vehicle were .40 mil and .45 mil, respectively. The extreme

spread for the firings was 46 cm. These average standard deviations were essentially the same as

those for the previous firings for the vehicle traveling straight toward the target.

7. Conclusions

(1) The IRT applied to an M16A2 rifle firing from over the front of a fast attack vehicle

improved the accuracy to such an extent that a test engineer was able to keep 10-round

groups of M855 ammunition to within a 43-cm circle, which was centered on the target,

while firing at the rate of about 60 rd/min from inside the vehicle while it was moving at 16

kph toward a 400-m target.

(2) The IRT applied to an M16A2 rifle firing from over the side of a fast attack vehicle improved

the accuracy to such an extent that a test engineer was able to keep 10-round groups of M855

ammunition to within a 48-cm circle, which was centered on the target, while firing at the

rate of about 60 rd/min from inside the vehicle while it was moving at 16 kph parallel to a

400-m target.

(3) The IRT applied to an M16A2 rifle firing from over the front of a fast attack vehicle

improved the accuracy to such an extent that a test engineer was able to keep 10-round

groups of M855 ammunition to within a 46-cm circle, which was centered on the target,

while firing at the rate of about 60 rd/min from inside the vehicle while it was moving at

16 kph toward a 400-m target that was moving left to right at 16 kph.

11

INTENTIONALLY LEFT BLANK.

12

Appendix:

— si

Computer Programs

' Program Charlie4 is the computer program for the 386 SX computer. Program Z is the computer program for the
WinSystem 486 SLC computer.

13

INTENTIONALLY LEFT BLANK.

14

Program Charlie4; {May 3rd, 1994,09:54 A.M., November 3,1994}
uses {Video Charlie}

graph, crt;
type alO = array[0..9] of word;

var A :al0;
Gd, Gm :integer;
pO, pi rboolean;
ccc,ddd,i,j,k,l :byte;
vw,www :word;

xll,xl2,x21,x22,yll,yl2,y21,y22:word;
r0,rl,q0,all,bl l:\vord;

Procedure Initialize;
begin

asm
mov dx,74bh
mov al, 09bh {Ports A, B and C all input}
out dx,al

end;

' xll:=0; xl2:=0; yll:=0; yl2:=0; x21:=0; x22:=0; y21:=0; y22:=0;
all.-=320; bll:=100; a[0]:=0; a[l]:=0; a[2]:=0; a[3]:=0;

end;

Procedure Plot_It (x,y:byte; var v:byte);
begin

SetColor(Black);

r0:=x;rl:=x+7;
q0:=y;
Iine(r0,q0,rl,q0);

r0:=x;rl:=x+7;
q0:=y+l;
Iine(r0,q0,rl,q0);

r0:=x;rl:=x+7;
q0:=y+2;
Iine(r0,q0,rl,q0);

15

r0:=x;rl:=x+7;
q0:=y+3;
Iine(r0,q0,rl,q0);

rO:=x;rl:=x+7;
q0:=y+4;
Iine(r0,q0,rl,q0);

rO:=x;rl:=x+7;
q0:=y+5;
Iine(r0,q0,rl,q0);

r0:=x;rl:=x+7;
q0:=y+6;
Iine(r0,q0,rl,q0);

setcolor(white);
ifv<5then
begin {0-4}

case v of
0:outtextxy(x,y,'0')
1 :outtextxy(x,y,T)
2:outtextxy(x,y,'2')
3:outtextxy(x,y,'3')
4:outtextxy(x,y,'4')

end
end
else
begin {5-9}

case v of
5:outtextxy(x,y,'5')
6:outtextxy(x,y,'6')
7:outtextxy(x,y,7')
8:outtextxy(x,y,,80:
9:outtextxy(x,y,l9')

end
end

end;

Procedure GetData(var ddd,ccc:byte; var vw,www:word; var pO,pl:boolean);
begin

{sxxx xxxx xccc cddd dddd dddd}

16

asm <$G+}
mov dx,749h

@0: in al,dx
decdx ; inal,dx
inc dx ; in al,dx

mov cl,al {xccc cddd > cl}
mov ch,al {dddd dddd > ch}

{xccc dddd > al}
andal,cl ; andal,080h ;jz@0

les bx,DDD
mov al,cl
ror al,3
and al,0fh
moves:[bx],al

lesbx,VW ; mov es:[bx],ch
moval,cl ; andal,07h ;
moves:[bx+l],al

{xccc cddd >al}
{dddx cccc > al}

{0000 cccc > al}
{OOOOcccoDDD}

{dddd dddd > VW}
{0000 0ddd>al}

{0000 0ddd>vw+l}

les bx,CCC ; {Bit 7 of port 74ah is connected to }
mov dx,074ah ; {the external video sync.}
in al,dx ; {No other bits are used.}
moves:[bx],al

end;

A[DDD] := VW;

begin

pl:=p0;
if ((CCC and 128) > 0) then p0 := true else pO := false;

if ((p0 = true) and (pi = false)) then
begin

begin
vw := A[4];
i := vw div 1000; vw := vw - i*1000; plot_it(10,10,i);
j := vw div 100; vw := wv - j* 100; plot_it(20,10,j);
k:=wvdiv 10;vw:=wv-k* 10; plot_it(30,10,k);
1 := wv; plot_it(40,10,l);

end;

begin
SetColor(Black);
Iine(xll,yll,xl2,yl2);

17

Iine(x21,y21,x22,y22);
Iine(x21-2,y21,x22-2,y22);
Iine(x21+2,y21 ,x22+2,y22);

VW := A[2];
if vw > 638 then wv := 638;
xll
xl2
x21

= vw-20;ifxll< lthenxll:= 1;
= vw + 20; if xl2> 638 then xl2:= 638;
= wv; x22 := vw;

WWW:=A[3];
if www > 198 then www := 198;
y21
y22
yll

:=www- 8;ify21< ltheny21:= 1;
:- www + 8; if y22> 198 then y22:= 198;
= www; yl2 := www;

SetColor(White);
Iine(xll,yll,xl2,yl2);
line(x21 ,y21 ,x22,y22);
line(x21-2,y21 ,x22-2,y22);
Iine(x21+2,y21,x22+2,y22)

end;

begin
SetColor(Black);
line(al l-20,bl l-8,al l+20,bl 1-8);
line(al l-20,bl l+8,al l+8,bl 1+8);

WV := A[0];
if vw > 630 then vw := 630;
ifvw< 8thenvw:= 8;
all :=vw;

WWW:=A[1];
if www > 190 then www := 190;
if www < 8 then www := 8;
bll := www;
{if(dddand2 = 0}

SetColor(White);
line(al l-20,bl l-8,al l+20,bl 1-8);
line(al l-20,bl l+8,al l+8,bl 1+8);

end;

18

end; {if ((pO = true) and (pi = false))}
end;
end; {procedure}

begin {Main}

Gd:=detect;
Initgraph (Gd, Gm, 'c:\tp\bgi');
if graphresult <> grOk then

begin
writeln('Cannot file graphics files. Press any key to continue.');
readln; halt (1);

end;

(* initial values *)

Initialize; p0:= true;

while keypressed = false do GetData(ddd,ccc,vw,www,pO,pl);
closegraph;

end.

19

Program Z; {September 14,1992, June 21,1993, March 24,1994}
{N+} {March 31,1994 - Predict 40 ms, cycle 2 ms}

{April 25,1994 - used with video reticle genrator}
{February 7,1995, February 21,1995 }
{April 30,1996, May 8,1996}
{May 14,1996 used with GPS}

{August 9,1996 - new processor board (33MhZ), new dt, new time: 6.0ms}
{August 9,1996 - new delays for the Laser Range Finder}
{October 1996 - Rewritten and updated. Includes wheel geometry}
{January 1997 - New predictor - outputted to DAC ports/with firing pulse}
{November 4,1997 - Camera stabilization}
{November 20,1997- New camera stabilization}
{BFCs denotes Body Fixed Coordinates, ICs denotes Ihertial Coordinates}

Uses Graph,Crt; {Port assignments: 050h to 057h}

Const B_V=20; B_H=30; B_V2=B_V div 2; B_H2=B_H div 2;
Const bit0=0;bitl=l;bit2=4;bit3=8;bit4=16;bit5=32;bit6=64;bit7=128;
Const EarthRadius = 6369537.34; saeo_c = 1750; saep_c= -440;

WheelToSight_X - 1.2; WheelToSight_Y - 1.0; WheelToSight_Z = 2.0; {BFC}
ConversionToRadians = 2*pi/65536; NoOfConversionsPerSecond = 3500;
Coeffl=1.05*(10/9)*(pi/2)/131071; {100 degrees per second > 2**17-1}
ANG=0.04997558594;

Type
seal = double;
r33 = array[l ..3,1 ..3] of seal; i88 = array[0..7,0..7] of byte;
r8 = array[0..7] of seal;
i8 =array[0..7]ofbyte;
r3 = array[1..3] of seal;
arl28b - array[1..150] of byte;
i3 =array[1..3] of integer;
alO = array[0..10] of seal; var r,v:al0;

Var
ww,swz,teerPortCO,PortCl,flop : byte;
s : ar 128b; {Supports the GPS }

c_azi,c_ele, CosO,SinO,CosP,SIhP: Seal;
xc,yc, gd, gm, i,m ,e : integer;

Fir,FirP,Error, GPS, WC, Counter : boolean;
abcboolean;

nnn : i8;
tau, we0,wel,we2,we3,we4,we5,we6 :seal;

Range, Azi0,Azil ,Ele0,Elel ,Temp,Slew : seal;
B1,B2, dt, suml, sum2, wx, wy, wz : seal; {Body fixed angular rates}
C_Joy_0,C_Joy_P,Pl,P2,temp2, SE : seal;
Port7Bit6, Port7In, BI0,BIl,Bib, sam: byte;

20

Channel, n3, n2, nl, nO : byte; {Raw sensor inputs}
port6, Port9_In, n7, n6, n5, n4 : byte; {Raw sensor inputs}
PortBJh,P7InP, j, k, cnt, P7In, PCIn: byte; {couters and flag}
Looper, Delay, wrd : Word;

nn : i88; {Raw sensor inputs}
we7, LLL, Count : word;

wappp, wapp,wap : seal;
weppp, wepp,wep : seal;
ii_c_azi, conl,con2,alpha : seal;
Dist, Temp_word,app,bpp: word;

SaeO, SaeP,SaeO_, SaeP_ : seal;
IntO,IntP, JoyO, JoyP, Speed,err,zse : seal;

vxx, vyy, vzz,dxx,dyy,dzz,dx,dy,dz : seal;
a :r33; {Transformation matrix}

i_c_ele,i_c_azi, xi, et, ze, ch : seal; {Quaterianvriables}
c_a_drift,c_e_drift, xidp,etdp,zedp,chdp: seal; {Predicted derivatives}
D_AzO,D_E10, xidO, etdO, zedO, chdO : seal; {Previous derivatives}
rr, ss, tt, xx, yy, zz, dt2 : seal; {Normalized time step}
rrr,sss,ttt,xxx,yyy,zzz,D_Azl ,D_EH : seal; {Body fixed angular rates }
xa,ya,za,xb,yb,zb : seal; {Body fixed linear accelerations}
Z0,zl,z2,z3,z4,d0,dl,d2,d3,d4,fff :boolean;

c_ele_f,c_azi_f, azi_lim, ele_lim : seal;
TimeOfFlight,xw, yw, zw, t,azza,azze : seal; {Defines point 1, previous}
DriftX, DriftY, DriftZ, sum : seal;
JoyP_,JoyO_,o,oo,ooo,p,pp,ppp,ao,ap : seal;
Y09,YP9,YO,YP,SO,SP,john,jane : seal;
aa,bb,cc,dd,ee,aabb,ccdd, col : r3;
the,phi,alt, zzzz : real;
indx : i3;

Procedure PutP3(var ArByte); begin asm mov dx,233h; les bx, A; mov al.es: [bx]; out dx.al
end end;
Procedure PutP6(var A:Byte); begin asm mov dx,236h; les bx, A; mov al,es:[bx]; out dx,al
end end;
Procedure D; var i,j: byte;

begin for i := 0 to 255 do for j:= 0 to 255 do begin end end;
Procedure CX100_Mode; var P3:byte;begin P3:=$47; PutP3(P3); D end;
Procedure Dis_Ovl; var P6:byte; begin P6:=$27; PutP6(P6); D end;
Procedure Ovr_Ena; var P6:byte; begin P6:=$29; PutP6(P6); D end;
Procedure Disjnt; var P6:byte; begin P6:=$10; PutP6(P6); D end;
Procedure High_Res;var P6:byte; begin P6:=$0a; PutP6(P6); D end;

21

Procedure Set_Pix(var A,B:word);
begin asm {$G+}

les bx,B
mov cx,es:[bx] {ex: 0 0 0 0 0 0 0 b8 b7 b6 b5 b4 b3 b2 bl bO}
les bx,A
mov dx,es:[bx] <dx: 0 0 0 0 0 0 0 a8 a7 a6 a5 a4 a3 a2 al aO}
rol dx,l {dx: 0 0 0 0 0 0 a8 a7 a6 a5 a4a3 a2 al aO 0}
xor al,al
mov ah,dl {ax:a6 a5 a4 a3 a2 al aO 0 0 0 0 0 0 0 0 0}
add cx,ax <cx:a6 a5 a4 a3 a2 al aO b8 b7 b6 b5 b4 b3 b2 bl bO}
mov al,dh {al: 0 0 0 0 0 0 a8 a7}
and al,03h {al: 0 0 0 0 0 0 a8 a7}

mov dx,236h {Output the Page_Select bits to Port 6 }
out dx,al {Output to P0, program the two "page" bits, P0.1, P0.0)

{D} mov al,l; @0: dec al; jnz @0
movax.OdOOOh {ax: 1010 0000 0000 000 0}
mov es,ax {es: 0000 1010 0000 000 0}

mov al,lbh; out dx,al {Ram Enable}
{D} moval,l; @1: decal; jnz@l
mov al, 29h; out dx,al {OverLay_Enable}
{D} moval,l; @2: dec al; jnz @2
mov bx,cx {bx:a6 a5 a4 a3 a2 al aO b8 b7 b6 b5 b4 b3 b2 bl bO}
mov al, OOh {ax: ********}
mov es:[bx],al {Move pixel value to video memory}

{D} moval.l; @3: dec al; jnz @3
mov al,es:[bx] {write to video ram}
moval,lah; outdx,al {Ram Disable}

end end;

Procedure ReSet_Pix(var A,B:word);
begin asm {$G+}

les bx,B; mov cx,es:[bx]; les bx,A; mov dx,es:[bx]; rol dx,l; xor al,al
movah,dl; addcx,ax; moval,dh; andal,03h;
mov dx,236h; out dx,al; mov al,l; @0: dec al; jnz @0
mov ax,0d000h; moves,ax; moval,lbh; outdx,al; moval,l; @1: decal; jnz@1
mov al, 29h; out dx,al; mov al,l; @2: dec al; jnz @2
movbx.cx; moval, Ofh {0,1 or 15}
mov es:[bx],al; mov al,l; @3: dec al; jnz @3
moval,es:[bx]; moval.lah; outdx,al

end end;

22

Procedure LineV(xO, yO,n:word; colonboolean);
var i :word;
begin

for i := 0 to n do
begin

if color then Set_Pix(xO,yO) else ReSet_Pix(xO,yO);
yO:=yO+l;

end;
end;

Procedure LineH(xO, yO,n:word; colonboolean);
var i :word;
begin

for i := 0 to n do
begin

if color then Set_Pix(xO,yO) else ReSet_Pix(xO,yO);
xO:=xO+l;

end;
end;

Procedure GJhit;
var irword;
begin
CX100_Mode; {Places boared in the CXI00 mode}
Dis_Ovl; {Display_Overlay}
Ovr_Ena; {Overlay_Enable}
Dis_Int; {Disable Interrupts}
High_Res; {Enables High Resolution}
for i:= 0 to 511 do LineH(i,0,511 ,false);
end;

Procedure G_Set(xO,yO:word;c:boolean);
begin
LineV(xO, yO, B_V,c);
LineH(xO, yO, B_H,c);
LineH(xO, yO+B_V, B_H,c);
LineV(xO+B_H,yO, B_V,c);
end;

PROCEDURE LuDcmp(n :integer; VAR a: r33; VAR indx :i3; VAR d :seal);
CONST tiny=1.0e-20;

VAR k,j,imax,i: integer;
sum,dum,big: seal;

23

w:r3;
BEGIN

d:=1.0 ;
FOR i:=l TO n DO BEGIN
big:=0.0;
FOR j:- 1 TO n DO IF (abs(a[ij]) > big) THEN big:=abs(a[i,j]);
IF (big=0.0) THEN BEGIN END; {if}
w[i]:=1.0/big;

END; {for i}

FOR j:= 1 TO n DO BEGIN
IF (j>l) THEN BEGIN
FOR i:=l TO j-1 DO BEGIN

sum:=a[i,j];
IF (i>l) THEN BEGIN

FOR k:= 1 TO i-1 DO sum :=sum-a[i,k]*a[k,j]; a[ij] := sum;
END {if i}

END {for i}
END; {if j}

big:=0.0;
FOR i:=j TO n DO BEGIN

sum:= a[i,j];
IF (j>l) THEN BEGIN

FOR k:=l TO j-1 DO sum:=sum-a[i,k]*a[k j]; a[i j]:- sum;
END; {if j}

dum:= w[i]*abs(sum);
IF (dum>big) THEN BEGIN big:=dum; imax :=i END {if dum}

END; {for i>

IF (jo imax) THEN
BEGIN

FOR k:= 1 TO n DO BEGIN
dum:=a[imax,k]; a[imaxjc]:=a[jjk:]; a[j,k]:=dum;

END; {fork}
d:=-d; w[imax]:=w[j];
END; {if j}

indx[j]:= imax;
IF(jon) THEN

BEGIN
IF(a[j,j]=0.0) THEN a[j,j]:=tiny; dum :=1.0/a[j,j];
FOR i := j+1 TO n DO a[i,j]:=a[ij]*dum;

24

END {if j}
END; {for j}

IF(a[n,n] =0.0) THEN a[n,n] := tiny;
END; {proc}

Procedure LuBkSb(n :integer; VAR indx :i3; VAR b :r3; VAR a :r33);
VAR j,ip,ü,i:integer;

sum: seal;
BEGIN

ii:=0;
FOR i:=l TO n DO BEGIN

ip:=indx[i]; sum:=b[ip]; b[ip]:=b[i];
IF(ii <> 0)THEN

BEGIN
FOR j:= ii TO i-1 DO sum:=sum-a[i,j]*b[j];

END {if ii}
ELSE IF (sum <> 0.0) THEN E:= i;
b[i]:=sum;

END; {for i}
FOR i:= n DOWNTO 1 DO BEGIN

sum := b[i];
IF (i<n) THEN FOR j:=i+l TO n DO sum := sum -a[i,j]*b[j];
b[i]:= sum/a[i,i];

END {for i}
END; {procedure}

Procedure Mat_Inv(var a,y:r33); {Generates the inverse matrix of A in Y}
var i,j,n:integer; d:seal; {The matrix A is destroyed}
begin
n:=3;
LuDcmp(n,a,indx,d);
forj := 1 ton do
begin

for i := 1 to n do col[i]:=0;
col[j]:=1.0;
LuBkSb(n,indx,col,a);
fori:=ltondo y[i,j]:=col[i];

end;
end;

25

Procedure MATMAT (var c:r33; a, b:r33);
var i ,j,k:word; sum:seal;
begin

for i :=1 to 3 do for k := 1 to 3 do
begin sum:=0;for j:=l to 3 do sum:=sum+a[i,jj*b[j,k]; c[i,k] := sum end;

end;

Procedure MATMUL(var a,b:r3;var c:r33);
var i,j:word; sumrseal;
begin for i:= 1 to 3 do begin sum := 0;

for j := 1 to 3 do sum := sum + b[j]*c[i,j];
a[i] := sum end end;

Procedure MATMULInv(var a,b:r3;var c:r33);
var i,j:word; sum: seal;
begin for i:= 1 to 3 do begin sum := 0;
for j := 1 to 3 do sum := sum + b[j]*c[j,i];
a[i] := sum end end;

Procedure VDIF(var a,b,c:r3);
var i:word;begin for i:=l to 3 do a[i]:=b[i]-c[i] end;

Procedure CMULT(var a,b,c:r3);
begin a[l]:=b[2]*c[3]-b[3]*c[2]; a[2]:=b[3]*c[l]-b[l]*c[3];

a[3]:=b[l]*c[2]-b[2]*c[l] end;

Procedure Norm(var a:r3);
var temprseal; i :word;

begin temp := 0;
for i := 1 to 3 do temp := temp + sqr(a[i]); temp := sqrt(temp);
for i := 1 to 3 do a[i]:=a[i]/temp end;

Procedure DotProd(var r:seal;a,b:r3);
begin r := a[l]*b[l]+a[2]*b[2]+a[3]*b[3]; end;

26

Function ATan (y,x:real):real;
var u:real;
begin
if ((x=0) and (y=0)) then atan:=0.0 else
begin
if (abs(x) < abs(y)) then
begin {abs(x) < abs(y)}

u:=arctan(abs(x/y));
ifx<0then
begin {x<0> if y>0 then atan:=pi/2+u else atan:=-pi/2-u end else
begin {x>0} if y>0 then atan:=pi/2-u else atan:=-pi/2+u end

end else
begin {abs(x) >= abs(y)}

u:= arctan(abs(y/x));
ifx<0then
begin {x<0} if y>0 then atan:=pi -u else atan:= -pi +u end else
begin {x>0} if y>0 then atan := u else atan:= -u end

end
end

end;

Procedure Mat(var xi,et,ze,ch:seal; var a:r33);
var ze2, et2, xi2, ch2, ze_et, ze_xi, ze_ch, xi_et, et_ch, xi_ch:seal;
begin {calculates elements of the transformation matrix)

ze2 := ze*ze; xi2 := xi*xi; et2 := et*et; ch2 := ch*ch; et_ch:=et*ch;
ze_et:=ze*et; ze_xi:=ze*xi; ze_ch:=ze*ch; xi_et:=et*xi; xi_ch:=xi*ch;

a[l ,l]:=xi2-et2-ze2+ch2;a[l ,2]:= 2*(xi_et+ze_ch);a[l ,3]:= 2*(ze_xi-et_ch);
a[2,l]:=2*(xi_et-ze_ch);a[2,2]:=-xi2+et2-ze2+ch2;a[2,3]:=2*(ze_et+xi_ch);
a[3,l]:=2*(ze_xi+et_ch);a[3,2]:=2*(ze_et-xi_ch);a[3,3]:=-xi2-et2+ze2+ch2

end; {procedure}

Procedure Mat_Der(var xi, et, ze, ch, wl, w2, w3, xi_, et_, ze_, ch_:seal);
begin xi_:=(ch*wl - ze*w2 + et*w3)/2; et_:=(ze*wl + ch*w2 - xi*w3)/2;

ze_:=(-et*wl + xi*w2 + ch*w3)/2; ch_:=(-xi*wl - et*w2 - ze*w3)/2 end;

Procedure ICsToBFCs(var x, y, z, x_, y_, z_ :seal);
begin x:=x_*a[l,l]+y_*a[l,2]+z_*a[l,3];

y:=x_*a[2,l]+y_*a[2,2]+z_*a[2,3];
z:=x_*a[3,l]+y_*a[3,2]+z_*a[3,3]; end;

27

Procedure BFCsToICs (var x_,y_,z_:seal; x,y,z:seal);
begin x_:=x * a[l,l] + y * a[2,l] + z * a[3,l];

y_:=x * a[l,2] + y * a[2,2] + z * a[3,2];
z_:=x * a[l,3] + y * a[2,3] + z * a[3,3] end;

Procedure Initialize_Q (var xi, et, ze, ch :seal);
begin xi:=0; et:=0; ze:=0; ch:=l; end;

Procedure lhtegrate(var a,b,c,d, uO,ul, vO,vl, wO,wl, xO,xl:seal);
begin a:=a+(u0+ul)*dt2;b:=b+(v0+vl)*dt2;c:=c+(w0+wl)*dt2;d:=d+(x0+xl)*dt2
end;

Procedure Up_Date(var a,b,c,d,e,f,g,h:seal);begin a:=b;c:=d;e:=f;g:=h end;

Procedure Normalize(var a,b,c,d:seal);
var sum:seal; begin {Normalize the Quaterion coefficients}

sum:= sqrt(sqr(a) + sqr(b) + sqr(c) + sqr(d));
a:=a/sum; b:=b/sum; c:=c/sum; d:=d/sum end;

Procedure Step(var channel:byte; var value:word; var sigmboolean);
begin
if channel = 0 then value := value + 32768;
if sign = true then value := value + 16384;
asm <$G+} {sccc cddd dddd dddd}
mov dx,0300h;
les bx,value; mov ax,es:[bx]; {ahrdddd dddd, al:dddd dddd}
out dx,al; {dddd dddd} {Bits 0 - 7 > 300h}
movdx,0302h; {302h>dx}
mov al,ah
out dx,al

end;
end;

Procedure Stepper_Driver(Channehbyte; var W:seal; YO:seal; var S0:seal);
const alpha = 2000; beta = 100;
var sign:boolean; Wp,a,b:seal; wrdrword;
begin

28

WP:=W;
W :={ W +} alpha*yO*dt + beta*SO;
if W > 0.33 then W := 0.33; if W < -0.33 then W := -0.33;
if ((P7In and 1) = 0) then W := 0;

{ Bound W. }
ifW<=Wpthen
begin if W < (Wp-0.005) then W := Wp-0.005 end
else
begin if W > (Wp+0.005) then W := Wp+0.005 end;

a:=W;
ifa<0
then begin sign := false; a := -a end
else begin sign := true; end;

if a > 0.00006 then b := 1/a else b := 17000;
wrd := trunc(b);
if wrd > 16383 then wrd := 16383;

Step (channel, Wrd,sign);
end;

Procedure GetPort7(var A:Byte);
begin asm <$G+} mov dx,0331h; in al,dx; les bx, A; mov es:[bx],al end end;

(*
Procedure GetPortC(var A:Byte);
begin asm {$G+} mov dx,019Ch; in al,dx; les bx, A; mov es:[bx],al end end;

*)
Procedure GetPortB(var A:Byte);
begin asm {$G+> mov dx,0331h; in al,dx; les bx, A; mov es:[bx],al end end;

Procedure SetPort6_l(var A:Byte);
begin asm {$G+} mov dx,0301h; les bx, A;moval,es:[bx]; <(A)>al}

oral,bitl; mov es:[bx],al; out dx,al end end;

29

Procedure ResetPort6_l(var A:Byte);
begin asm {$G+> mov dx,0301h; les bx, A; mov al,es:[bx];

and al,255-bitl; mov es:[bx],al; out dx,al end end;

Procedure SetPort6_7(var A:Byte);
begin asm {$G+> mov dx,0335h; les bx,A; mov al,es:[bx];

or al,bit7; mov es:[bx],al; out dx, al end end;

Procedure ResetPort6_7(var A:Byte);
begin asm <$G+> mov dx,0335h; les bx,A; mov al,es:[bx];

and al,255-bit7; mov es:[bx],al; out dx,al end end;

Procedure SetPort6_0(var A:Byte);
begin asm {$G+> mov dx,0301h; les bx,A; mov al,es:[bx]; {(A) > al}
or al,bitO; mov es:[bx],al; out dx,al end end;

Procedure ResetPort6_0(var A:Byte);
begin asm {$G+> mov dx,0301h; les bx, A; mov al,es:[bx];

and al,255 - bitO; mov es:[bx],al; out dx,al end end;

Procedure Convert(var s:real; var nn:i8);
begin
{real: s:l f:39 e:8. v := (-l)**s*2**(e-129)*(l.f). if e=0 then v:=0}
{ b47 b46-b8 b7-b0 }

asm {MSByte ah, al, ch, cl LSByte}
<$G+}

les bx,nn
moval,es:[bx+4] { al: s.inm.2m.l m.0 x x b25 b24}
andal,3 { al: 0 0 0 0 0 0 b25 b24}

mov dl,es:[bx+5] { dh: s.inm.2m.l m.0 x x b27 b26}
anddl,3 { dh: 0 0 0 0 0 0b27 b26}
rol dl,2
oral,dl { al: 0 0 0 0 b27 b26 b25 b24}

mov dl,es:[bx+6] { dl: s.inm.2m.l m.0 x x b29 b28}
and dl,3

30

rol dl,4
or al,dl

movdl,es:[bx+7] { dl: s.inm.2m.l m.O x x b31 b30}
anddl,3
rol dl,6
oral,dl {al: b31 b30b29b28b27b26b25b24}

mov cl,es:[bx+2] <cl: b23 b22 b21 b20 bl9 bl8 bl7 bl6}
mov dh,es:[bx+l] {dh: bl5 bl4bl3 bl2bll blO b9 b8>
mov dl,es:[bx+0] {dl: b7 b6 b5 b4 b3 b2 bl bO}
movch,0 {ch: 0000000 0}
testal,128 {al: b31 0 0 0 0 0 0 0}
jz@00 {Jump if negative}

{sign:l, al:8, cl:8, dh:8, dl:8,00:8, ah:8}
xor al,255 {b31 b30 b29 b28 b27 b26 b25 b24}
xor cl,255 {b23 b22 b21 b20 bl9 bl8 bl7 bl6}
xor dh,255 {bl5 bl4 bl3 bl2 bll blO b09 b08}
xor dl,255 {b07 b06 b05 b04 b03 b02 bOl bOO}
adddl,l; adcdh.O; adccl,0; adcal,0; mov ch, 128

@00:mov ah,128+32 {sign:l, al:8, cl:8, dh:8, dl:8,00:8, ah:8}
testal,255; {Check for all zeros} jnz@3

mov al,cl; mov cl,dh; mov dh,dl; mov dl,0; mov ah, 128+8+8+8
test al,255; jnz @3

mov al,cl; mov cl,dh; mov dh,00;
test al,255; jnz @3

mov al,cl; mov cl,00;
test al,255; jnz @3

mov al,00;
jmp @57

@3:
dec ah;
dec ah;
dec ah;
dec ah;
dec ah;
dec ah;
dec ah

mov ah,128+8+8

mov ah, 128+8

; mov ah,0
{Finished}

test al,128;
test al,64;
test al,32;
test al,16;
test al,8;
test al,4;
test al,2;

jnz@57
jnz@56
jnz@55
jnz@54
jnz@53
jnz@52
jnz @51

31

{al, cl, dh, dl, 00, ah}
rcl dl,l; rcl dh,l; rcl cl,l; rcl al,l

@51:rcldl,l;rcldh,l;rclcl,l
@52: rcl dl,l; rcl dh,l; rcl cl,l
@53: rcl dl,l; rcl dh,l; rcl cl,l
@54: rcl dl,l; rcl dh,l; rcl cl,l
@55:rcldl,l;rcldh,l;rclcl,l
@56: rcl dl,l; rcl dh,l; rcl cl,l

rcl al,l
rcl al,l
rcl al,l
rcl al,l
rcl al,l
rcl al,l

@57: and al,127; or al,ch; les bx,s; mov es:[bx+5],al
mov es: [bx+4] ,cl; mov es: [bx+3] ,dh; mov es: [bx+2] ,dl
xoral.al; mov es:[bx+l],al; moves:[bx+0],ah

end; {Asm}
end; {Proc Convert}

Procedure Ack_Lo(var CNT:byte); begin asm <$G+}
mov dx,0336h; mov ah,0

@0: dec ah; jz @ 1; in al,dx; test al,128 {bit7}; jnz @0
@ 1: les bx,CNT; mov es: [bx] ,ah end end;

Procedure Ack_Hi(var CNT:byte);
begin asm {$G+}
mov dx,0336h; mov ah,0

@0: dec ah; jz @ 1; in al,dx; test al,128 {bit7}; jz @0
@ 1: les bx,CNT; mov es: [bx] ,ah end end;

Procedure Get_Result(var al,aO:byte);
begin asm <$G+} mov dx,0334h; les bx,aO; inal,dx; mov es:[bx],al
movdx,0334h; lesbx.al; inal,dx; mov es:[bx],al end end;

Procedure Ext_Sign_Bit(var aO:byte);
begin asm {$G+} les bx,aO; mov al,es:[bx];
and al,15; test al,8; jz @0; or al, 240

@0: mov es:[bx],al end end;

Procedure Int(var n2:byte; var n4,n3:byte);
begin asm {$G+} les bx,n2; mov al,es:[bx]; mov ah,al;

32

and al, 112 {Mask channel };ror al,4; les bx,n4; mov es:[bx],al;mov al,ah;
and al, 12 {Mask set}; ror al,2; les bx,n3; mov es:[bx],al end end;

Procedure C16(var countrword; var nO,nl:byte);
begin asm {$G+} les bx,nO; mov al,es:[bx]; les bx,nl; mov ah,es:[bx]
les bx,count; mov es:[bx],ax end end;

Procedure get(var nO:byte);
begin asm {$G+} mov dx,0336h;in al,dx;les bx,nO;mov es:[bx],al end end;

Procedure GetReading (var nn:I88; var Count:Word; var n4,n5 :Byte);
var jJc,n3,n2,nl,nO,CNT :Byte;
begin {11}
error := false;
j:= 0;
n5:=0; n2 := 0;
while (j<7)do
begin {j2}

inc(n5);

k := 0;
n4 := 0;
while (k<3) do

begin {k3}
inc (n4);
if ((n2 and 128) = 0) then

begin {0 4}
setport6_7(Port6);
ack_hi(CNT); {Wait for ack to go high}
if(CNT=0)then exit;
get_result (n2,n0);
int(n2,jjc);
rm[j Jc+4] := n2;
nn[j,k] := n0

end {0 4}
else

begin {14}
resetPort6_7(Port6);
ack_lo(CNT); {Wait for ack to go low }
if (CNT =0) then exit;

33

get_result (n2,nl);
int(n2,jjc);
nn[j,k+4] := n2;
nn[jjc]:=nl ;

end; {1 4}

end; {k3}

{if n4 o 4 then error := true;}

end; {j 2}
setPort6_7(Port6); {*}
resetPort6_7(Port6);

if n5 <> 8 then error := true;

cl 6(count,nn[6,3],nn[7,3]);

end;

Procedure ReadShaftEncoder_Azi (var S:seal;var P:byte; var T_Word:word);
begin asm {$G+} {Do not change bits P. 1 and P.O }
lesbxJP ; mov ah,es:[bx]; and ah, Ofch {ah:0000 OOnn}

»
mov dx,301h;
mov al,ah; or al,bit2; out dx,al {al:0000 Olnn} {Set Update Command}

{Delay for 1 us}
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;

les bx,t_word;
mov al,ah; out dx,al {al:0000 OOnn} {Reset Update Command}

mov dx,331h
@0:inal,dx ; andal,bit6; jz@0; {Wait for update complete}

mov dx,301h {Set address 0}
mov al,ah ; or al, bit4 ; out dx.al {al:0001 OOnn}

{Delay for 1 us}
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;

34

mov dx,332h ; in al,dx ; mov es:[bx],al; {Read LSByte)

mov dx, 301h {ReSet address 0}
moval,ah ; outdx,al {al:0000 OOnn}

{Set address 1}
or al,bit3 ; out dx,al {al:0000 10nn}

{Delay for 1 us}
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;

movdx,332h ; inal,dx; mov es:[bx+l], al; {Read MSByte}

mov dx, 301h {Reset Address 1}
moval,ah ; outdx,al {al:0000 OOnn}

end; {asm}
S := t_word;

end; {procedure}

Procedure ReadShaftEncoder_Ele (var S:seal;var P:byte; var T_Word:word);
begin asm {$G+} {Do not change bits P. 1 and P.O}
les bx,P ; mov ah,es:[bx]; and ah, Ofch {ah:0000 OOnn}

movdx,301h;
mov al,ah; or al,bit5; out dx,al {al:0000 Olnn} {Set Update Command}

{Delay for 1 us}
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;

les bx,t_word;
mov al,ah; out dx,al {al:0000 OOnn} {Reset Update Command}

mov dx,331h
@0:inal,dx ; and al, triff; jz@0; {Wait for update complete}

mov dx,301h {Set address 0}
mov al,ah ; or al, bit7 ; out dx,al {al:0001 OOnn}

{Delay for 1 us}
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;

35

mov dx,330h ; in al.dx ; mov es:[bx],al; {Read LSByte}

mov dx, 301h {ReSet address 0}
moval,ah ; outdx,al {al:0000 OOnn}

{Set address 1}
oral,bit6 ; outdx,al {al:0000 lOnn}

{Delay for 1 us}
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;

movdx,330h ; inal,dx; moves:[bx+l],al; {Read MSByte)

mov dx, 301h {Reset Address 1 >
moval,ah ; outdx,al {al:0000 OOnn}

end; {asm}
S := t_word;

end; {procedure}

Procedure Wheel_Pulse;
begin asm {$G+}mov dx,0306h;

mov al,0;out dx,al;mov al,bitO;out dx,al end end;

Procedure Wheel_Read(var Port9_In:Byte);
begin asm {$G+} les bx,Port9_In; mov dx,0305h;

in al,dx; mov es:[bx],al end end;

Procedure Sensors (var wx,wz,wy,joy_o,joy_p, c_azi, c_ele :seal;
var Count:word);

varjjk:byte;
begin

GetReading(nn, Count, n4,n5);
j := 3; if (error=false) then begin
for k := 0 to 7 do nnn[k] := nn[j,k]; Convert(zzzz,nnn) end;wx:=-zzzz;

j := 7;if (error=false) then begin
for k := 0 to 7 do nnn[k] := nn[j Jc]; Convert(zzzz,nnn) end;wz:=-zzzz;

j := 6; if (error=false) then begin

36

for k := 0 to 7 do nnn[k] := nn[j,k]; Convert(zzzz,nnn) end;wy:=-zzzz;

j := 2; if (error=false) then begin
for k:=0 to 7 do nnn[k]:=nn[j Jc]; Convert(zzzz,nnn) end;joy_0 := zzzz;

j := 4; if (error=false) then begin
for k:=0 to 7 do nnn[k]:=nn[j,k]; Convert(zzzz,nnn) end;c_azi := zzzz;

j := 0; if (error=false) then begin
for k:=0 to 7 do nnn[k]:==nn[j,k]; Convert(zzzz,nnn) end;c_ele := zzzz;

j := 5;if (error=false) then begin
for k:=0 to 7 do nnnpk:]:=nn|j Jc]; Convert(zzzz,nnn) end;joy_P := zzzz;

end;

Procedure Draw(x,y:seal);
var a,b:integer; c:boolean;
begin
c:=false; G_Set(ApP,BpP,Q;
A :=-Trunc(X*l 17)+255; B := Trunc(Y*100)+255; G_Set(a,b,c);
ApP := a; BpP:= b;

end;

Procedure Fit(var ZZZ,ZZ,Z,YZ,SZ:seal);
var Y9: seal;
begin YZ :=(5*z+zz+zz-zzz)/6; y9 := (z+zz+zzz)/3; SZ := (YZ - Y9) end;

(* Procedure GetPort77(var a,b:byte);
begin
a:=0; b:=255;
while aob do
begin asm {$G+}mov dx,0331h; les bx,b; in al,dx; mov es:[bx],al;

les bx,a; in al,dx; mov es:[bx],al end end end;
*)

37

Procedure Encoders(var SaeO, SaeP:Seal);
begin
ReadShaftEncoder_Azi(SaeO, Port6,temp_word); <0 <= SaeO <= 65535}
ReadShaftEncoder_Ele(SaeP, Port6,temp_word); {0 <= SaeP <= 65535}
saeo:= saeo + saeo_c; saep := saep + saep_c;
if saeO>32767 then saeo:=saeo-65535; if saep>32767 then saep:=saep-65535;
SaeO := SaeO*ConversionToRadians; SaeP := -SaeP*ConversionToRadians

end;

(*
Procedure GetPortD(var value,sam:byte);

begin sam:=0;value:=255;while sam <> value do begin asm {$G+}mov dx,019dh;
les bx,value;in al,dx; mov es:[bx],al;les bx,sam;in al,dx; mov es:[bx],al
end end end;

*)

(* Procedure PutPortC(nnnn:byte;var value:byte); begin value:=nnnn;
asm {$G+} mov dx,019ch; les bx,value; mov al,es:[bx]; out dx,al end; end;

*)

(* Procedure BitGet(var a,b:byte);
begin asm {$G+}
les bx,B; mov al, es:[bx]; and al,40h; add al,al; mov ah.al
les bx,A; mov al, es:[bx]; oral,ah; mov es:[bx],al end; end;

*)

Procedure SerialToReal(var s:arl28b;var vrreal);
begin
asm {$G+} les bx,S; mov ch,es:[bx]; mov cl,es:[bx+l]; mov dh,es:[bx+2];
mov dl,es:[bx+3]; mov ah,es:[bx+4];mov al,es:[bx+5];
les bx,V; mov es:[bx],ch; mov es:[bx+l],cl; mov es:[bx+2],dh;
mov es:[bx+3],dl; mov es:[bx+4],ah;mov es:[bx+5],al;end; end;

Procedure ConvertSing(n:word; var s:arl28b; var x:real);
varmJk:word; t:arl28b;
begin m:=l; for k := n to n+1 do begin t[m]:=s[k+k-l];inc(m);t[m]:=s[k+k];
inc(m); end; t[6]:=t[4];t[5]:=t[3]; t[4]:=t[2];t[3]:=0; t[2]:=0;
SerialToReal(t,x); end;

38

Procedure ConvertReal(n:word; var s:arl28b;var x:real);
var m,k:word; t:arl28b;
begin m:= 1; for k := n to n+2 do

begin t[m] := s[k+k-l]; inc(m); t[m] := s[k+k]; inc(m);
end;
serialToReal(t,x)
end;

Procedure PutPort6(var a:byte);
begin asm <$G+} mov dx,0301h;les bx,a; mov al,es:[bx]; out dx,al; end end;

Procedure Delay_(a:word);
var irword;
begin for i := 0 to a do begin end end;

Procedure SuperElevation(var Range, Angle: Seal);
{Units are meters and radians}
begin Angle :=Range*(0.000003119+Range*0.00000001521)/2 end;

(*

Procedure LaserRangeFinder;
begin

begin
Port6 := Port6 and (255-32);
PutPort6(Port6);
Delay_(200);
Port6 := Port6 or 32;
PutPort6(Port6);

s

Port7Bit6 :=0;
while Port7Bit6 = 0 do

begin
GetPort7(Port7In);
Port7Bit6 := Port7In and 64;
if keypressed=true then Port7Bit6:=l;

end;
GetPortC(PortCO);
portö := portö and 255 - 8;
PutPort6(Port6);
delay_(400);
GetPortC(PortCl);

39

Porto := portö or 8;
dist := 0;
if portcO and 128 > 0 then dist:= dist + 200;
ifportcOand 64 > 0 then dist: = dist + 2000;
if portcO and 32 > 0 then dist:= dist + 4000;
if portcO and 16 > 0 then dist:= dist + 8000;
if portcO and 4 > 0 then dist:= dist + 400;
if portcO and 2 > 0 then dist:= dist + 800;
if portcO and 1 > 0 then dist:= dist + 1000;

if portcl and 64 > 0 then dist:= dist + 20
if portcl and 32 > 0 then dist:= dist + 40:
if portcl and 16 > 0 then dist:= dist + 80:
if portcl and 8 > 0 then dist:= dist + 100;
if portcl and 2 > 0 then dist:= dist + 5;
if portcl and 1 > 0 then dist:= dist + 10;
range := dist+ 0.1;
if range < 5 then range := 5;

end; {Reading the Laser Range Finder}
end;

*)

Procedure Time_Of_Flight(var a, b: seal);
begin a:= b*(0.00092314 + b*0.00000109913) end; {b denotes the range}

Procedure Matrixintegrate; begin
Mat_Der(xi, et, ze, ch, wx, wy, wz, xidp, etdp, zedp, chdp);
Integrate(xi,et,ze,ch, xid0,xidp, etd0,etdp, zed0,zedp, chd0,chdp);
Up_Date(xid0, xidp, etdO, etdp, zed0,zedp, chdO, chdp);
Normalize(xi, et, ze, ch); {Assures orthonormality}
if WC then Wheel_Pulse; {Allows time for the embedded controller}
Mat(xi, et, ze, ch, A); {Defines the A transformation matrix} end;

Procedure DriftCorrection; begin wx := Coeffl * (wx/count - DriftX);
wy:=Coeffl*(wy/count - DriftY); wz := Coeffl * (wz/count - DriftZ); end;

Procedure DAC00(var xxrinteger); begin (*asm {$G+}
mov dx,0ffe0h; les bx,xx; mov ax,es:[bx]; xor ah,008h
out dx,ax end*) end;

Procedure DAC01(var xxrinteger); begin(* asm {$G+}
mov dx,0ffe2h; les bx,xx; mov ax,es:[bx]; xor ah,008h

40

out dx,ax end*) end;

Procedure DAC02(var xx:integer); begin (*asm <$G+>
mov dx,0ffe4h; les bx,xx; mov ax,es:[bx]; xor ah,008h
out dx,ax end*) end;

Procedure DAC03(var xx:integer); begin (* asm {$G+}
mov dx,0ffe6h; les bx,xx; mov ax,es:[bx]; xor ah,008h
out dx,ax end*) end;

Procedure ConfigA(var zrbyte); {J3 }
begin asm{$G+}
mov dx,0303h; {Configuration A>les bx,z;mov al,es:[bx];out dx,al end end;

Procedure ConfigB(var z:byte); {J4}
begin asm{$G+}
mov dx,0307h; {Configuration B>les bx,z;mov al,es:[bx];out dx,al end end;

Procedure ConfigC(var z:byte);{J3>
begin asm{$G+}
mov dx,0333h; {Configuration C>les bx,z;mov al,es:[bx];out dx,al end end;

Procedure ConfigD(var z:byte);{J4}
begin asm{$G+}
mov dx,0337h; {Configuration D}les bx,z;mov al,es:[bx];out dx,al end end;

(* MAIN *)
{ The origin for the Body Fixed Coordinates (BFCs) is the sight
aligned with the orientation of the buggy.
xx, yy and zz define the location of the sight in Inertial Coordinates (ICs).
xw, yx and zw define the location of the counter wheel in ICs.
xb, yb and zb define the location of the target wrt the BFCs.
xa, ya and za define the location of the target wrt the ICs.}

BEGIN {main} G_Init; {Initializes the video display board}

ww:=$80;ConfigA(ww);
ww:=$82;ConfigB(ww);
ww:=$9b;ConfigC(ww);
ww:=$99;ConfigD(ww);
app:=0;bpp:=0; {Initializes the graphics}
Port6 :=127;
GetPort7(P7In);
writeln('main');

41

GPS:=FALSE; WC:=true;{ if((P7In and 4)«0) then GPS := TRUE else WC := TRUE;}

ao := 0; ap := 0; {Dummy variables used by the stepper procedure}

JoyO_:=0; JoyP_:=0; {Used in the joystick integration mode}

C_Joy_O:=pi/(180*131072);C_Joy_P:=pi/(180*131072);{Joy stick sensitivity}

Floppi; SaeO_:= 0; SaeP_ := 0; OO:=0; O:=0; PP:=0; P:=0;

sensors(wy,wz,wx,joyp,joyo,c_azi, c_ele, Count); {Done for synchronization}

c_a_drift := c_azi/count; c_e_drift:= c_ele/count;

get_result (n2,n0); ii_c_azi:=0;

Ack_Lo(CNT); {Test slave's output - low normal state}
if(CNT = 0)then
begin

writeln('Slave in wrong state. Press any key');
halt;

end;
writeln('sensors');

suml := 0; sum2 := 0; Bl := 0; B2 := 0;

ResetPort6_0(Port6); Fir := False; LLL:=0;

xc:=0; dt := 0.0060; dt2 :=dt/2;
xid0:=0; etd0:=0; zed0:=0; chd0:=0;
Speed:=0;
Range := 100; {Center of Screen (COS) Sight to Target distance}
{xb, yb, zb define the target in Body Fixed Coordinates (BFCs)}
Encoders (SaeO,SaeP); {Center of the Screen} {O elevation, P azimuth}
CosP := cos(SaeP); SinP := sin(SaeP);CosO := cos(SaeO); SinO := sin(SaeO);
xb:=CosO*CosP*Range;
yb:=CosO*SinP*Range;
zb:=SinO*Range;{COS, wrt BFCs, BFCs}

if WC then
begin

Wheel_Pulse; {Initializes wheel pulse counter}
xx:=0;yy:=0;zz:=0; {xx yy zz:location of the origin of the BFCs, ICs}

end;

42

Initialize_Q(xi,et,ze,ch); {0,0,0,1} .
Mat(xi, et, ze, ch, A); {Defines the A transformation matrix, A=L1 J >

{Initial position of the Reference Wheel, ICs}{A=[l]}
xw:=xx - WheelToSight_X; yw:=yy - WheelToSight.Y; zw:=zz-WheelToSight_Z;
{xw yw zw: the Reference Wheel wrt BFCs, ICs}

SuperElevation(Range, SE); {SE defines the super elevation angle}
ZSE := SE*Range; {ZSE becomes the apparent z offset of the target}

BFCsToICs(xa,ya,za,xb,yb,zb); {Target's Position, COS, wrt BFCs, ICs}
xxx:=xa+xx; yyy:=ya+yy; zzz:=za+zz; {COS&Range, wrtlCsJCs}
IntP:=0; IntO:=0; yo:=0; yp:=0; so:=0; sp:=0;

i_c_azi:=0; i_c_ele:=0; {Integrals of the camera rates, azi. and ele.}

writeln('xx yy zz\ xx:12:2, yy:12:2, zz:12:2);
writelnCxb yb zb\ xb:12:2, yb:12:2, zb:12:2);
writeln('xa ya za", xa:12:2, ya:12:2, za:12:2);
writelnCxxx yyy zzz', xxx: 12:2, yyy: 12:2, zzz: 12:2);
Looper := 0; {Used by the wheel counter to automatically go to drift mode)
writelnCEntering master loop1);

(*
for 111:= 1 to 40 do
besin

sensors(wy,wz,wx,joyp,joyo,c_ele, c_azi, Count); {Done for synchronization}
c_a_drift := c_azi/count;
c_e_drift:= c_ele/count;
driftx:=wx/count; drifty:=wy/count; driftz:=wz/count;
c_a_drift := c_a_drift + (c_azi - c_a_drift)*0.001;
c_e_drift := c_e_drift + (c_ele - c_e_drift)*0.001;
driftx:=driftx+(wx-driftx)*0.001;
drifty:=drifty+(wy-drifty)*0.001;
driftz:=driftz+(wz-driftz)*0.001;

end;
*)

sensors(wy,wz,wx,joyp,joyo,c_ele, c_azi, Count); {Done for synchronization}
driftx:= wx/count; drifty:=wy/count; driftz:=wz/count;

c_azi:=c_azi/count;c_ele:=c_ele/count;

driftx:= 41; drifty:= -753; driftz :=356 ;
c_a_drift:=2157; c_e_drift:=574;

vxx := 0; vyy := 0 {- 4.47} {10 mph}; vzz:=0; {Speed of the target in BFCs.}

43

t:=0;
weppp:=0; wepp:=0; wep:=0;

wappp:=O;wapp:=0; wap:=0;

clrscr;
(* Master Loop *)

while true do
begin

if keypressed=true then
begin writeln(driftx: 16:6,drifty: 16:6,driftz: 16:6,
c_a_drift:16:6,c_e_drift:16:6); halt end;

GetPort7(P71n);

Sensors(wy, wz, wx, JoyP, JoyO, c_ele, c_azi, Count);

c_azi := c_azi/count; c_ele := c_ele/count;
c_azi := c_azi - c_a_drift; c_ele := c_ele - c_e_drift;

DriftCorrection; {Cancels out static drift in wx, wy and wz}

; {Looper is used to turn on and off the drift corection}
{and is based on when the last wheel pulse was detected.}

if ((Looper=0) and (P7In and 1 = 0)) then
begin
if wx < 0 then driftx := driftx - 0.2 else driftx := driftx + 0.2;
if wy < 0 then drifty := drifty - 0.2 else drifty := drifty + 0.2;
if wz < 0 then driftz := driftz - 0.2 else driftz := driftz + 0.2;
end;
if c_azi<0 then c_a_drift := c_a_drift -1.2 else c_a_drift := c_a_drift + 1.2;
if c_ele<0 then c_e_drift := c_e_drift -1.2 else c_e_drift := c_e_drift + 1.2;

Matrixintegrate; {Update Quaterions based on angular rates }

if WC then
begin

Wheel_Read(Port9_In); {Number of pulses since last update}
Temp := Port9_In*0.133; {0.133 is the distance in meters per count}
BFCsToICs(xx,yy,zz,WheelToSight_X,WheelToSIght_Y,WheelToSight_Z);

44

xw := xw + Temp*a[l,l];xx:= xx + xw; {xw: Ref. Wheel's position, ICs}
yw := yw + Temp*a[l,2];yy:= yy + yw; {xx: Scope's position, ICs}
zw := zw + Temp*a[l,3];zz:= zz + zw;
{xw, yw and zw: the Reference Wheel's position in IC}
{xx, yy and zz: the location of the sight (origin of BFCs) in ICs}
if Port9_In > 0 then looper:=1815 else if looper>0 then dec(looper);
Speed:= 0.99*Speed + 0.01 *temp/dt;

end;

{ gotoxy(l,l);write(speed:12:2); }

Encoders (SaeO,SaeP); {Center of the Screen} {O elevation, P azimuth}
CosP := cos(SaeP); SinP := sin(SaeP);CosO := cos(SaeO); SinO := sin(SaeO);

{Routine for setting the Range}
GetPortB(PortB_In);

If (PortBJn and 4=0) then
begin {manual ranging and Target Position (BFCs) update}

IntO:=C_Joy_0*JoyO/count; IntP :=-C_Joy_P*JoyP/count;
i_c_ele:=0; i_c_azi:=0; {Terms used for the joystick integration}
xw:=0; yw:=0; zw:=0;
If ((PortB_In and 8) = 0) then Range := Range + 0.1;
If ((PortB_In and 16) = 0) then Range := Range - 0.1;
if range < 5 then range := 5;
xb:= CosO*CosP*Range; yb := CosO*SinP*Range; zb := SinO*Range;
BFCsToICs(xa,ya,za,xb,yb,zb);{Center of Screen (COS) & Range, wrt BFCs}
xxx:=xa+xx;yyy:=ya+yy;zzz:=za+zz;{COS&Range, wrt ICs,ICs}
t:=0;

end;
{gotoxy(l,l);
writeln(xxx: 12:2,yyy: 12:2,zzz: 12:2);
writeln(xx:12:2, yy:12:2, zz:12:2);
}

{Target Acquire}

if ((PortBJn and 4>0) and ((PortBJn and 16)=0)) then
begin
{ LaserRangeFinder;}

45

if range <10 then range:=100;
IntO:= C_Joy_0*JoyO/count; IntP := -C_Joy_P*JoyP/count;
i_c_ele:=0; i_c_azi:=0; {Terms used for the joystick integration}
xw:=0; yw:=0; zw:=0;
xb := CosO*CosP*Range; yb := CosO*SinP*Range; zb := SinO*Range;
BFCsToICs(xa,ya,za,xb,yb,zb);
xxx:=xa+xx; yyy:=ya+yy; zzz:=za+zz;{COS&Range, wrt ICsJCs}
sensors(weO,wel ,we2,we3,we4,we5,we6, we7);

t:=0;
end;
>

{ t:=t + dt;}

{ xxx := xxx + vxx*dt; yyy := yyy+vyy*dt; zzz := zzz+ vzz*dt;}

<gotoxy(l,l); writeln(t: 12:2,xxx: 12:2, yyy: 12:2,zzz: 12:2); }

RRR:=XXX - XX; SSS:=YYY - YY; TTT:=ZZZ - ZZ; {COS&Range, wrt BFCs, ICs}
Range:=sqrt(sqr(RRR) + sqr(SSS) + sqr(TTT)); {COS distance}

{ Output(4,Range); }

Time_Of_Hight(TimeOfFlight,Range);
{TimeOfFlight is an approximation neglecting the speed of the vehicle}

ICsToBFCs(rr,ss,tt^rr,sss,ttt);{COS&Range+Gravity, wrt BFCs (BFCs&ICs)}
aziO := atan(SS,RR); eleO :=atan(TT,sqrt(sqr(RR)+sqr(SS))); {COS}

SuperElevation(Range, SE); {SE defines the super elevation angle}
ZSE := SE*Range; {ZSE becomes the apparent z offset of the target}

{ dxx:=vxx*TimeOfFlight; dyy:= vyy*TimeOfFlight; dzz:=vzz*TimeOfFlight;}

{ ICsToBFCs(dx,dy,dz,dxx,dyy,dzz);}

RR:=RR + Speed*TimeOfFlight {- DX}; {RR SS TT: hit point, wrt BFCs, BFCs}
{ SS := SS - DY; }

TT:=TT - ZSE {- DZ}; {Gravity Drop of the Projectile}
{COS&Range+Gravity, Lead Angle, wrt BFCs}

azil:=atan(SS,RR){+0.238/range}; elel :=atan(TT,sqrt(sqr(RR)+sqr(SS)));

46

SetPort6_0(Port6);

{2O}Stepper_Driver(0,AO,YO+0.5*SO,SO);

Slew := 0.005; if ((PortBJn and 64)=0) then slew := 0.05;
JoyP := C_Joy_P*JoyP/count;
if ((P7in and 2)=0) then IntP := IntP + JoyP*slew;
JoyP_ := JoyP + IntP;

Slew := 0.005; if ((PortBJn and 8)=0) then slew := 0.01;
JoyO := - C_Joy_0*JoyO/count;
if ((P7in and 2)=0) then IntO:=IntO + JoyO * slew {else t:=0};
JoyO_ := JoyO + IntO;

{2P} Stepper_Driver(l ,AP,YP+0.5*SP,SP);

SaeO := SaeO + JoyO_; {Elevation) Saep := Saep + JoyP_; {Azimuth}
D_E10 :=(SaeO - EleO); D_Az0 := (SaeP - AziO);
D_E11 :=(SaeO - Elel); D_Azl := (SaeP - Azil);
{Elevation, O, Azimuth, P}

OOO := OO; 00:=0; O :=-D_E10; PPP := PP; PP:=P; P := D_AzO;
Y09:=YO; Fit(000,00,0,YO,SO); {Generates YO,SO}
YP9 := YP; Fit(PPP,PP,P,YP,SP); {Generates YP,SP>

{00} Stepper_Driver(0,AO,YO,SO);

ele_lim:=0.0030; azijim: =0.0030; tau:=0.4;

conl:=dt; con2:=l-conl;

c_azi:=c_azi*0.000010;
c_ele:=c_ele*0.000010;

i_c_ele := (i_c_ele + c_ele *conl)*con2;
i_c_azi := (i_c_azi + c_azi *conl)*con2;

{gotoxy(l,l); write(c_azi:12:6, i_c_azi:12:6,c_a_drift:12:6);}

if i_c_ele > ele_lim then i_c_ele := ele_lim;
if i_c_ele < -ele_lim then i_c_ele := -ele_lim;
if i_c_azi > azi_lim then i_c_azi := azi_lim;

47

if i_c_azi < -azi_lim then i_c_azi := -azi_lim;

azza:= - i_c_azi;
azze:= i_c_ele;

{writeC azzal ',azza:8:4); }
weppp:=wepp; wepp:=wep; wep:= -D_E11;
wappp:=wapp;wapp:=wap; wap:= D_Azl;

draw(weppp + azze ,
wappp + azza);

for m := 1 to 5 do r[m-l]:=r[m];
r[5]:=o;
john:=r[5]+(r[5]-r[0]);

for m := 1 to 5 do v[m-l]:=v[m];
v[5]:=p;
jane:=v[5]+(v[5]-v[0]);

FirP := Fir;
If ((P7In and 32=0) and (Fir=False)) then
begin err:=sqit(sqr(john)+sqr(Jane)); if err<0.0002 then Fir:=True end;

if ((Fir = True) and (FirP = False)) then SetPort6_l(Port6);
if (Fir = True) then inc(LLL);
if (LLL= 10)thenResetPort6_l(Port6);
if (LLL = 100) then begin Fir:=False; ResetPort6_l(Port6);LLL:= 0; end;

if fir then John := john+ 0.002;

if fir then jane := jane + 0.002;

if (o > ANG) then xc:=$7ff else if (o < -0.05/3) then xc:=$800 else
xc := trunc(temp * 40960*3); DACOO(xc);

{ *** > temp2:= - weppp{- c_azi*0.002};
if (p > ANG) then xc:=$7ff else if (p < -0.05/3) then xc:=$800 else
xc := trunc(temp2 *40960*3); DAC01(xc);

48

if (john > ANG) then xc:=$7ff else if (John < -0.05/3) then xc:=$800 else
xc := trunc(john*40960*3); DAC02(xc);

if (jane > ANG) then xc:=$7ff else if (jane < -0.05/3) then xc:=$800 else
xc := tranc(jane*4O960*3); DAC03(xc);

GetPort7(P7In);
P7InP:=P7In;

(* whüe (not (P7In and 8 = 8) and (P7InP and 8 = 0)) do
begin P7InP:=P7In;GetPort7(P7In) end; {External Clock Synchronization)

*)
ResetPort6_0(Port6);
<0P} Stepper_Driver(l, AP,YP,SP);

end;
end. {main}

49

INTENTIONALLY LEFT BLANK.

50

NO. OF
COPIES ORGANIZATION

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTICDDA
8725 JOHN J KINGMAN RD
STE0944
FT BELVOIR VA 22060-6218

1 HQDA
DAMOFDQ
D SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

1 OSD
OUSD(A&T)/ODDDR&E(R)
RJTREW
THEPENTAGON
WASHINGTON DC 20301-7100

1 DPTYCGFORRDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

NO. OF
COPIES ORGANIZATION

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRLDD
2800 POWDER MILL RD
ADELPHI MD 20783-1197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-1145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIRUSARL
AMSRL CI LP (BLDG 305)

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGRENRD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MADNMATH
THAYERHALL
WEST POINT NY 10996-1786

51

NO. OF
COPIES ORGANIZATION

CDR
USASOC
DSCR
AOFIRI MSI
E BROWN SOST COORDINATOR
FORT BRAGG NC 28307

CDR
USASOCOM
SOSTT
W WILLIAMS
BLDG 102
MACDILL AFB FL 33621-5316

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND (CONT)

7 DIRUSARL
AMSRLWMBA
WD'AMICO
TBROSSEAU
BHAUG
MKREGEL
J MCLAUGHLIN
AMSRLWMMB
R KASTE
LBURTON

OFFICE OF SPECIAL TECH
G SHOCK
10530 RIVERVIEW RD
FT WASHINGTON MD 20744

CDR
US ARMY ARDEC
AMSTA CCJ
S SMALL
PICATINNY ARSENAL NJ
07806-5000

CDR
US ARMY ARDEC
AMSTA DSA SA
J UNTERKOFLER
MDOWNES
PICATINNY ARSENAL NJ
07806-5000

ABERDEEN PROVING GROUND

DIR USATC
STEACAECA
PMCCALL
D GRIFFIN
STEACFCM
AROSE
G NIEWENHOUS
G BREWER

52

REPORT DOCUMENTATION PAGE
Form Approved
OUB No. 0704-0188

Public r^onina bur im U ».I. «JUcdon .1 Inlom.Jon I. ..dm.»! to .»».9. \ U, P- «p.» InduJnglMU. far ^"^"'^^*"^«£ JZ, J^LTS «T
B.trJniTd £.tmMng Or. d.t> nwM. «id compwlR«and »Mqth. eoMeHon ojlnfonnrtoo *jnd «™^^J^ "*""^.'"'SL^SJSSLti
eokttion of Ifdonnrton. rndudta« tuggMicnt for radudng tw. bunton. to W«Mn««> rtedqinn» S*rvtew^J«»«»SL^^^^A«^^?^ "^^

April 2000

Dtvl« Hflhwty Suit» 1204. Afllnoton. V* «2TO-1302. ind to die OUte» ol Mirmunfil ind 9udat. Piprwofti Reduction ProWeBOTtX-Oiae) Wtrtllnflton, DC 20503.
1. AGENCY USE ONLY fi*ave blank) JZ REPORT DATE"j 3. REPORT TYPE AND DATK* «JVLHtu

Final,
4. TITLE AND SUBTITLE

The Inertial Reticle Technology (IRT) Applied to an M16A2 Rifle Firing From a
Fast Attack Vehicle

6. AUTHOR(S)

Timothy L. Brosseau, Mark D. Kregel, Baily T. Haug, and John T. McLaughlin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

U.S. Army Research Laboratory
ATTN: AMSRL-WM-BA
Aberdeen Proving Ground, MD 21005-5066

9. feP0>iS0RING/MÖNlfORldG AÖENCV NAMENS) AND ADDRESS(ES>

5. FUNDING NUMBERS

1L162618AH80

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2209

1Ö.SP6N£6RWG/M6NITÖRING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

i2a. DISTRIBüTIöNVAVAILäBILITY SUTEMLWI

Approved for public release; distribution is unlimited.

lib. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Motion of the muzzle of a weapon fired from a moving vehicle occurs during firing because of many factors, such as
vibrations caused by the vehicle's wheels or the terrain. This motion can have adverse effects on the capabilities of the
weapon to hit a target because the shooter is unable to accurately position the muzzle of the weapon onto the target as
the projectile exits the barrel. Large, heavy vehicles, such as the Abrams tank, the Bradley Fighting Vehicle, and the
costly Apache helicopter, have very expensive gun turrets that are controlled by very expensive, fully stabilized gun
sights to accurately position the muzzle of the weapon onto the target. However, small and lightweight vehicles, such
as a small helicopter, a fast attack vehicle, or a high-mobility multipurpose wheeled vehicle (HMMWV), cannot justify
such expensive gun turrets and fully stabilized sights. Therefore, to improve the accuracy of a weapon firing from a
small, lightweight vehicle, the U.S. Army Research Laboratory (ARL) has developed the Inertial Reticle Technology
(IRT).

This report presents how the IRT was applied to a 5.56-mm M16A2 rifle firing from a fast attack vehicle. The
complete details of the IRT applied to a 5.56-mm M16A2 rifle firing from a fast attack vehicle are presented along
with an analysis of stationary and moving vehicle live fire test data.
14. SUBJECT TERMS

Inertial Reticle Technology, M16A2 rifle, fast attack vehicle, M855 ammunition,
video camera, flat display monitor, quartz rate sensors, shaft angle encoders, firing
solenoid '
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

56
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 53

Standard r-orm 298 (Rev. 2-89)
Prescribed by ANSI SKI. 239-18 298-102

INTENTIONALLY LEFT BLANK.

54

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2209 (Brosseau) Date of Report April 2000

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be

used.) -

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.),

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate __

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS -—

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

